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ABSTRACT KEYWORDS
This study compares of two types of multispectral cameras, DJI Mavic 3M and MAPIR RGN,  Remote Sensing;
in assessing sugarcane health through reflectance analysis and vegetation indices. The  Multispectral
research was conducted in a sugarcane plantation in Sidoarjo, East Java, using multispectral  Camera;

data captured by drones. The analysis evaluated the relationship between reflectance Drone/UAV;
values, vegetation indices, and chlorophyll content in sugarcane. Results indicate that the  Precision Farming;
MAPIR RGN camera outperformed the DJI Mavic 3M in measuring chlorophyll content. The  Vegetation Index
Near Infrared (NIR) channel of MAPIR RGN showed the highest correlation with chlorophyll

(r=0.2166). Additionally, the Ratio Vegetation Index (RVI) from MAPIR RGN had the strongest

correlation (r = 0.2716) among all vegetation indices. Conversely, the DJI Mavic 3M camera

demonstrated weaker correlations across all reflectance channels and vegetation indices.

These differences may stem from sensor sensitivity and the quality of data produced by each

camera. Based on these findings, the MAPIR RGN camera is recommended for precision

agriculture applications in sugarcane plantations, as it provides more accurate spectral data

reflecting vegetation health. This study underscores the relevance of drone technology in

enhancing the efficiency of sugarcane plantation management.
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INTRODUCTION

Precision agriculture has become a key strategy in
achieving food sovereignty (Amarasingam et al., 2022).
Remote sensing technology plays a significant role in
supporting more efficient and effective agricultural land
management (Wang et al.,, 2025). This technological
advancement offers potential solutions for improving the
management of agricultural areas (Mpakairi et al., 2025;
van der Velden et al.,, 2025). Among agricultural
commodities, sugarcane holds substantial importance
as a primary source of sugar (Dimov et al., 2022). Sugar is
considered a staple food component crucial to human
livelihood, and most countries regulate its availability to
meet national consumption demands. In Indonesia, the
total area allocated to sugarcane plantations has shown
a consistent upward trend over the past decade.
However, this expansion has not been accompanied by a
proportional increase in productivity. Several factors
contribute to this discrepancy, including limited
implementation of modern management technologies in
sugarcane plantations, labor shortages, climatic
constraints, and the outdated infrastructure of most
sugar mills in the country.

According to data presented at the National
Summit on Sugar held on December 13, 2023, the area of
sugarcane plantations has continued to grow over the
past ten years. By 2022, sugarcane plantations in
Indonesia spanned approximately 490,000 hectares, and
the areawas projectedtoincrease to 505,000 hectares by
2023. Ironically, this increase in plantation area has not
resulted in a corresponding rise in sugar production,
which is largely attributed to the declining quality of
harvested sugarcane. This quality deterioration is
believed to stem from suboptimal plantation
management practices.

Remote sensing technology has been proven to
assistin land management (Sharmaetal., 2024; Xu et al.,
2024), including the monitoring of sugarcane agricultural
fields. Remote sensing enables spatial distribution
mapping and reduces the need for labor-intensive and
time-consuming field data collection, which typically
requires greater financial and human resources (Karongo
et al., 2025; Orynbaikyzy et al., 2019; Sgrensen et al.,
2025). Satellite imagery, the most commonly used
remote sensing data, provides a combination of various
spatial and spectral resolutions and allows for
computational data extraction and analysis (Damm et al.,
2022). However, satellite imagery often lacks the spatial
resolution required to capture fine-scale variations in
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sugarcane fields, particularly those with small plot sizes.
Therefore, higher-resolution remote sensing data with
rich spectral information suitable for digital processing
are needed (Xiao et al., 2025).

Unmanned aerial vehicles (UAVs), or drones, offer
a viable solution by generating high spatial resolution
imagery (digital aerial photography), capable of achieving
resolutions at the millimeter scale (Sofonia et al., 2019).
Currently, many UAV systems are equipped with
advanced digital cameras capable of capturing
multispectral imagery (Ebrahimy et al., 2025). Examples
include the MAPIR RGN camera and the multispectral
sensor integrated with the DJI Mavic 3M UAV, both of
which are commonly utilized for mapping purposes. The
diversity of drone-mounted cameras produces a range of
imagery with different spectral bands and capture ranges,
which may result in varied or sometimes overlapping
datasets. Given this variability, it is essential to examine
the specifications and characteristics of UAV imagery to
provide users with informed recommendations regarding
camera selection and field data acquisition strategies,
ensuring optimal data utilization in subsequent
applications.

Multispectral reflectance data captured by UAV-
mounted cameras plays a crucial role in assessing
chlorophyll content, a primary indicator of plant health
(Das et al., 2023; Gao et al., 2024). Chlorophyll is an
integral component of photosynthesis and has a direct
influence on plant growth, vigor, and productivity
(Woldemariam et al., 2024). Its presence is strongly
correlated with leaf coloration, canopy density, and
photosynthetic efficiency (Pierre Pott et al.,, 2022).
Chlorophyll predominantly absorbs light in the red and
blue wavelengths, while reflecting green and near-
infrared (NIR) light (Bagheri & Kafashan, 2025).
Multispectral cameras are capable of detecting this
spectral variance, allowing for the estimation of
chlorophyll content through vegetation indices (Ochiai et
al., 2024) such as the Normalized Difference Vegetation
Index (NDVI), Green NDVI (GNDVI), and the Modified
Chlorophyll Absorption Ratio Index (MCARI) (Hofmann,
2023).

Chlorophyll monitoring is particularly critical in
sugarcane cultivation, as it directly affects
photosynthetic performance and serves as a proxy for
plant health (Jay et al., 2017). Remote sensing data
acquired via multispectral cameras enable efficient
chlorophyll assessments using indices such as the
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Chlorophyll Index-Red Edge (CIRE) and GNDVI. These
indices have shown strong correlations with key
sugarcane parameters such as biomass, yield, and
disease resistance (Saengprachatanarug et al., 2022;
Shendryk et al., 2020). Spectral vegetation indices such
as the Ratio Vegetation Index (RVI) and the Difference
Vegetation Index (DVI) have demonstrated high
coefficients of determination (Rz), reaching values
between 0.94 and 0.96, making them highly reliable for
chlorophyll estimation in sugarcane (Narmilan et al.,
2022).

This study aims to compare the spectral data
output from two distinct UAV-compatible cameras—the
multispectral sensor of the DJI Mavic 3M and the MAPIR
RGN camera—to determine their respective capabilities
in providing vegetation indices for supporting precision
agriculture in sugarcane cultivation. Recent studies have
highlighted that multispectral cameras, such as those
integrated into the DJI Mavic 3M platform, can deliver
high-accuracy vegetation data with notable efficiency for
crop monitoring. In contrast, red-green-NIR cameras like
the MAPIR RGN remain widely used due to their
affordability and customizable spectral configurations.
However, direct performance comparisons between
these camera systems in the context of specific crops like
sugarcane remain limited. Therefore, this research
occupies a strategic position in addressing this
knowledge gap within the field of remote sensing-based
precision agriculture.

Lamongan.

Tikung

Mantup

METHOD

The method of collecting aerial photo data used in
this study is to conduct aerial photography directly on
sugarcane plantation land, using 2 different cameras
(MAPIR RGN Camera and DJI Mavic 3M Multispectral
Camera) which are transported using unmanned aerial
vehicles.

Research Location

The location of the research was carried out in a
sugarcane plantation in the Sidoarjo Regency area, East
Java Province, precisely in Urangagung Village, Sidoarjo
District. Sidoarjo is an area that has a fairly large
sugarcane plantation on the island of Java, so it is
considered to be able to present sugarcane plantations in
the Java Island area. The location can be seen in detail in
the following map image, where the research area is
focused on sugarcane plantation plots with an area of +1
Ha. The research area was adjusted to the capabilities of
the camera for photography and the diversity of
sugarcane plants with several different treatment plots in
terms of fertilization. With different treatments, it is
expected to provide a diversity of diverse spectral
responses to be covered through unmanned aircraft
cameras.
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Figure 1. Research Location, Sugarcane Plantation, Urangagung, Sidoarjo, East Java Province (7°26'16.6"S

112°39'53.7"E)
Source: Analysis results
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Table 1. Parameters of MAPIR RGN Camera and DJI Mavic 3M Multispectral Camera

Sensor Camera Spectral Range (nm)/Middle Wavelength Resolution GSD@120(cm)
(channel width) (nm) (pixels)
Mavic 3M Green (G): 560 = 16 nm; 2592 x 1944 6.4
(Multispectral Red (R): 650 = 16 nm;
Camera) Red Edge (RE): 730 £ 16 nm;
Near infrared (NIR): 860 = 26 nm
MAPIR RGN Green (G): 550+15nm; 4,000 x 3,000 2.3

Red(R): 660+15nm;

Near Infrared (NIR): 850+30nm

Source: www.mapir.camera dan www.ag.dji.com

Tools and Materials

The equipment used in this study is the DJI PHANTOM
Drone used to transport the MAPIR RGN Camera and
the DJI MAVIC 3M Unmanned Aircraft, as well as the
Geodetic GNSS Receiver for the tying of the position of
the Ground Control Point (GCP) in the field. Here are
the parameters of the MAPIR RGN camera and the DJI
Mavic 3M Multispectral Camera (see Table 1)

Field Data Acquisition

The MAPIR RGN camera is equipped with a
mounting to be installed on the DJI Phantom. When
shooting in the research area was carried out
alternately with a flying altitude of +100 m, at first the
DJI Mavic 3M was shot first, then continued with the
MAPIR RGN camera shot carried by DJI Phantom.
Before the shooting, a Ground Control Point was
installed as a binding point to make geometry
corrections on the aerial photos from the shooting.

The shooting process was carried out to make a
flight path plan by determining the coverage area /
Area of interest (AOI) which was then included in the
Flight Mission on the control of the unmanned aircraft,
along with other parameters such as Flight Path

(waypoint and flight path), Altitude (flight altitude),
Overlap (image overlap level), Gimbal Angles (camera
angle), Speed: (flight speed), Return to Home and
Method (RTK/PPK).

Before the flight, it is necessary to calibrate the
platform and camera sensors. The most important
thing related to this study is the calibration of
reflections using the Micasense Calibrated
Reflectance Panel (CRP) RP06-2123093-0B.
Reflectance calibration helps to normalize the data so
that the analysis results become consistent across
various environmental conditions (Swaminathan et
al., 2024). The calibration data using the reflectant
calibration panelis used for the radiometric correction
process on aerial photons during data processing after
data acquisition in the field.

For the purpose of compiling an aerial photo
mosaic into an orthophoto, it is necessary to make a
geometry correction that requires field control point
data in the form of Ground Control Point (GCP) and
Independ Contorl Point (ICP) to assess the validation
of the results of the orthorectification process. These
points were measured using a Geodetic-type GNSS
receiver, by pairing markers in the field.
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The process of mosaic preparation and
orthorectification uses agisoft metashape software,
the orthorectification processis carried out by utilizing
the Structure from Motion (SfM) technique to produce
a digital surface model (DSM) used in geometric
correction. Orthorectification corrects distortions due
to differences in surface height and camera angles,

allowing for more accurate analysis of geospatial
maps (Sai et al., 2019). By integrating Ground Control
Points (GCP) and SfM algorithms, Agisoft produces
orthophoto mosaics with high resolution and
geometric accuracy that meet standards (Pricope et
al., 2019).

Figure 3. Micasense Calibrated Reflectance Panel (CRP) RP06-2123093-0OB
Source: Analysis results

Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index
(NDVI) is a widely used formula in remote sensing to
monitor vegetation health, growth, and density. This index
is calculated using the reflectance values of the red
channel (RED) and near-infrared (NIR) spectrum of the
electromagnetic spectrum. NDVI is expressed by the

following formula:
NIR —R
NIR+R

NDVI =

This index effectively distinguishes between
healthy vegetation, which is higher in the NIR and less in
the RED, and areas that are not vegetated or unhealthy.
NDVlvaluesrange from-1to 1, where highervalues (close
to 1) indicate healthy, dense vegetation, and lower values
indicate barren or sparsely overgrown lands.

NDVI is the most popular index for vegetation
assessment due to its flexibility with any multispectral
sensor. They discuss its widespread use in Unmanned
Aerial System (UAS) applications while addressing
potential limitations such as atmospheric effects and
sensor inconsistencies (Huang et al, 2020). The
application of NDVI in precision agriculture uses UAV-
based multispectral cameras. has been conducted by
Deng et al., 2018 in the study compared the accuracy of
NDVI in various cameras and highlighted its role in
monitoring plant health under various conditions [(Deng
etal., 2018)]

Ratio Vegetation Index (RVI)

RVI is a vegetation index used in remote sensing to
monitor vegetation health and density. This index
calculates the ratio between reflections in the near-
infrared (NIR) and red (RED) spectrum bands. The
formula used is as follows:

Ry| = MR
Red
RVI is effective in distinguishing between

vegetated and non-vegetated areas, as vegetation is more
reflected in the NIR than in the red spectrum (RED). This
simplicity makes RVI a practical tool, although it is less
sensitive to high biomass areas compared to other
indices such as NDVI. The correlation of RVI with SAR
data, shows its potential in crop monitoring even under
cloud cover conditions (Alvarez-Mozos et al., 2021)
Green Normalized Difference Vegetation Index
(GNDVI)

The Green Normalized Difference Vegetation Index
(GNDVI) is a vegetation index used in remote sensing to
assess plant health and chlorophyll content. This index is
a modification of the Normalized Difference Vegetation
Index (NDVI), which replaces the red ribbon with the
green ribbon in its calculation. The formula used is as

follows:
NIR —Green

GNDVI = ——
NIR+Green



Candiago et al. (2015) explored the application of
GNDVI using multispectral imagery obtained by UAVs for
precision agriculture. This study emphasizes the
effectiveness of GNDVI in analyzing the health, strength,
and productivity levels of vegetation or plants (Candiago
etal,, 2015)

Comparison through Correlation Analysis

Correlation analysis is a statistical method used to
measure the strength and direction of the relationship
between two variables. In the context of this study,
correlation analysis was used to evaluate the relationship
between the reflectance values of the multispectral
cameras (MAPIR RGN and DJI Mavic 3M) and also their
derivatives (Vegetation Index) with chlorophyll levels
measured directly in the field. The correlation between
reflectance values and chlorophyll levels allows
validation of whether data from multispectral cameras
can be used to accurately predict/detect plant health
(Zhang et al., 2022). Through a comparison study of two
multispectral cameras it is possible to determine which
sensor is more effective for a particular application
(Olivetti et al., 2023).
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RESULTS AND DISCUSSION

Based on table 1. The parameter data of the MAPIR RGN
Camera and the Multispectral Camera on the DJI Mavic
3M, has a difference where the Mavic 3M has 4 channels,
namely Green Channel, Red Channel, RedEdge Channel,
and Near Infra Red Channel while MAPIR RGN has 3
Channels, namely Green Channel, Red Channeland Near
Infra Red Channel. Related to the spectral range on each
of the same channels is 10 nm adrift on each channeland
the range is 1 nm apart. The difference in pixel resolution
on the camera also causes a difference in Ground
Sampling Distance (GSD), where in the example at a flying
altitude of 120 m, the DJI Mavic 3M has a GSD of 6.4 cm
and the MAPIR RGN has a GSD of 2.3.cm, thus the MAPIR
RGN camera has a better spatial resolution compared to
the DJI Mavic 3M Multispectral camera.

The results of the mosaic and orthorectification process
from the shooting of both types of cameras, are presented
in the following image:

Figure 4. Orthophoto on multispectral camera compared to RGB Photo (left) DJI RGB Camera Color Aerial Photo;
(Middle) Color Infrared Aerial Photo of DJI Mavic 3M Multispectral Camera and (right) Color Infrared Aerial Photo of

MAPIR RGN Camera.

In addition to taking pictures, sample data was also taken
inthe field to be used as a calculation of chlorophyll. Field
samples were carried out in a total of 15 sample points,
with the distribution of sample points as shown in figure
5. The sampling method is Stratified Random Sampling
according to the treatment class on sugarcane plants.

The retrieval of reflectant pixel values on Orthophoto is
based on sampling points in the field whose location is
measured using a Geodetic GNSS Receiver. The samples
taken are inthe form of leaves on sugarcane plants, which
will then be measured in the laboratory.
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Figure 4. Map of Distribution of samples in the field

From the results of orthophoto, reflective data
was collected foreach channel contained in the two types
of cameras, namely the GREEN, RED, NIR channels. The
RedEdge channel on the DJI Mavic 3M multispectral
camera is not used as a comparison because the MAPIR
RGN camera does not produce the same channel. This is
done in order to have equality in the comparison of the
reflection of each channel, as well as the derivatives in
the vegetation index used. The reflective sample data
used was in accordance with the sample distribution in
the measurement of chlorophyll samples in the layer. The
following is the data for each type of camera.

Chlorophyll comes from the MAPIR RGN camera,
whichis an NIR (Near Infrared) channel, with a correlation
value of 0.2166. These channels show a positive
relationship between the reflectance values at the near-
infrared wavelength and the chlorophyll values measured
in the field. This correlation indicates that increased
reflectance in NIR channels is related to increased
chlorophyll levels, although the correlation is not very
strong. The reflections of the Green Channel and the Red
channel of the two cameras showed a weaker correlation.

This is in line with the theory that NIR channels are more
sensitive to light reflections from healthy leaves because
chlorophyll absorbs more light in the green and red
channels. The DJI Mavic 3M's multispectral camera,
despite having high sensitivity, does not show significant
correlation across all its reflection channels, including
NIR. This may be due to differences in sensor quality or
data processing settings in the camera.

Based on the correlation analysis between
chlorophyll values and vegetation index, the vegetation
index with the highest correlation was RVI (Ratio
Vegetation Index) from the MAPIR RGN camera, with a
correlation value of 0.2716. This shows that the RVI from
MAPIR RGN has the strongest relationship compared to
other vegetation indices, both from MAPIR RGN and DJI
Mavic 3M.

RVI is a simple index that calculates the ratio
between NIR reflectance and red reflectance. This index
has a high sensitivity to changes in plant conditions,
especially in health levels and chlorophyll levels. The
positive correlation showed that the higher the RRIvalue,
the higher the chlorophyll level measured.



Meanwhile, other vegetation indices such as NDVI
(Normalized Difference Vegetation Index) and GNDVI
(Green NDVI) from MAPIR RGN show a slightly lower
correlation than RVI, although still significant. For the DJI
Mavic 3M camera, all vegetation indices showed a weaker
correlation compared to the MAPIR RGN, which is most
likely due to different sensor sensitivities or the influence
of environmental conditions during shooting.

Based on the comprehensive analysis of the data,
a pronounced and noteworthy difference was observed
between the DJI Mavic 3M multispectral camera and the
MAPIR RGN camera in terms of their respective
capabilities in capturing the relationship between
spectral reflectance and vegetation indices with
chlorophyll content in sugarcane crops. These
differences are manifested in several key aspects,
including the sensitivity and spectral responsiveness of
specific reflectance channels, the precision and
reliability of the derived vegetation indices, as well as the
overall strength of the statistical correlation with
measured chlorophyll concentrations. This suggests that
each camera  exhibits distinct  performance
characteristics that may influence their suitability and
effectiveness for chlorophyll estimation and broader
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applications in precision agriculture monitoring for
sugarcane.

1. Reflectan

MAPIR RGN cameras show better performance in
terms of reflection correlation with chlorophyll,
especially in NIR (Near Infrared) channels with a
correlation of 0.2166. NIR has a high sensitivity to
vegetation health due to its strong reflective properties on
leaves with high chlorophyll content. In contrast, the
reflections from the DJI Mavic 3M's multispectral camera,
including its NIR channels, show a weak correlation with
chlorophyll. This can be due to differences in sensor
quality or data processing levels between the two
cameras.

2. Vegetation Index

The vegetation index of the MAPIR RGN camera,
such as RVI (0.2716), has the highest correlation with
chlorophyll compared to all otherindices, including those
derived from the DJI Mavic 3M multispectral camera. This
indicates that the MAPIR RGN camera is superior in
producing spectral data that is relevant for vegetation
analysis.

Table 2. Chlorophyll, Reflectance, and Vegetation Index Data on DJI Mavic 3M multispectral camera

Sample CHLOROPHYLL Green_DJI Red_DJI RedEdge_DJI NIR_DJI NDVI_DJI RVIDJI GNDVIDIJI
1 1.138 0.0691 0.0349 0.3086 0.3652 0.8256 10.4689 0.6817
2 1.159 0.0671 0.0571 0.1685 0.2047 0.5640 3.5866 0.5060
3 1.227 0.0542 0.0378 0.1626 0.2802 0.7623 7.4152 0.6759
4 1.081 0.1429 0.0799 0.3322 0.4034 0.6693 5.0473 0.4767
5 1.232 0.0560 0.0378 0.1610 0.1757 0.6458 4.6473 0.5167
6 1.130 0.0272 0.0163 0.0859 0.1436 0.7958 8.7925 0.6812
7 1.193 0.0823 0.0483 0.2418 0.2832 0.7087 5.8660 0.5495
8 1.070 0.0692 0.0400 0.2093 0.2639 0.7367 6.5950 0.5845
9 1.090 0.1329 0.0731 0.3550 0.5384 0.7608 7.3627 0.6039
10 1.141 0.0732 0.0501 0.2217 0.2659 0.6827 5.3037 0.5681
11 1.129 0.0601 0.0327 0.1404 0.1883 0.7041 5.7600 0.5159
12 1.156 0.0478 0.0224 0.1786 0.3107 0.8657 13.8909 0.7333
13 1.045 0.0656 0.0371 0.2355 0.2882 0.7719 7.7673 0.6290
14 1.160 0.0935 0.0454 0.2456 0.2713 0.7131 5.9711 0.4873
15 1.203 0.1217 0.0708 0.3198 0.4684 0.7375 6.6192 0.5875

Source : Research results, 2024
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Table 3. Chlorophyll, Reflectance, and Vegetation Index Data on Mair RGN multispectral cameras

Sample CHLOROPHYLL MAPIR_NIR MAPIR_ Red MAPIR_Green NDVI_MAPIR RVI_MAPIR GNDVI_MAPIR
1 1.138 1.29736 0.21945 0.09335 0.71064 5.91183 0.86575
2 1.159 1.14850 0.21472 0.04703 0.68498 5.34878 0.92133
3 1.227 1.53769 0.17578 0.08151 0.79482 8.74774 0.89932
4 1.081 1.09351 0.22659 0.11996 0.65670 4.82586 0.80228
5 1.232 1.16562 0.22867 0.07724 0.67199 5.09742 0.87571
6 1.130 1.46701 0.21225 0.06265 0.74721 6.91172 0.91808
7 1.193 1.22296 0.23230 0.09277 0.68074 5.26458 0.85898
8 1.070 1.18665 0.21378 0.07532 0.69470 5.55089 0.88063
9 1.090 1.48486 0.20764 0.09656 0.75463 7.15109 0.87788
10 1.141 1.27164 0.26184 0.10565 0.65850 4.85653 0.84658
11 1.129 1.06268 0.19510 0.10434 0.68977 5.44690 0.82119
12 1.156 1.45633 0.17926 0.08188 0.78080 8.12411 0.89354
13 1.045 1.22919 0.22202 0.06430 0.69403 5.53649 0.90058
14 1.160 0.92554 0.20633 0.07492 0.63542 4.48573 0.85023
15 1.203 1.54388 0.21066 0.08771 0.75987 7.32870 0.89249
Source: Research results, 2024
Table 4. Analysis of correlation results
No Variable Correlation Regression Equation R-squared
1 DJI_Green -0.21715977 KLOROFIL =1.1727 +-0.3754 * DJI_Green 0.047158
2 DJI_Red -0.110050839 KLOROFIL =1.1590 +-0.3391 * DJI_Red 0.012111
3 DIJI_NIR -0.200309179 KLOROFIL=1.1742 +-0.1032 * DJI_NIR 0.040124
4 DJI_NDVI -0.167657805 KLOROFIL =1.2356 +-0.1261 * DJI_NDVI 0.028109
5 DJI_RVI -0.097883004 KLOROFIL =1.1586 +-0.0021 * DJI_RVI 0.009581
6 DJI_GNDVI -0.004990562 KLOROFIL =1.1456 +-0.0035 * DJI_GNDVI 2.49E-05
7 MAPIR_Green -0.090770334 KLOROFIL=1.1664 +-0.2710 * MAPIR_Green 0.008239
8 MAPIR_Red -0.172202404 KLOROFIL=1.2414 +-0.4576 * MAPIR_Red 0.029654
9 MAPIR_NIR 0.216581501 KLOROFIL=1.0615 +0.0645 * MAPIR_NIR 0.046908
10 MAPIR_NDVI 0.214652567 KLOROFIL =0.9678 + 0.2483 * MAPIR_NDVI 0.046076
11 MAPIR_RVI 0.271581826 KLOROFIL=1.0725+0.0118 * MAPIR_RVI 0.073757
12 MAPIR_GNDVI 0.176362202 KLOROFIL=0.8870 + 0.2937 * MAPIR_GNDVI 0.031104

Source: Research results, 2024



CONCLUSION

Based on data analysis in reflection and
vegetation index research, the MAPIR RGN camera is
proven to be superior to the DJI Mavic 3M multispectral
camera for detecting sugarcane vegetation. This is based
on the higher correlation values between reflectant
values, vegetation index, and chlorophyll in the MAPIR
RGN camera. The NIR channel of MAPIR RGN has the
highest correlation with chlorophyll (0.2166), while in
terms of vegetation index, RVI MAPIR RGN shows the best
correlation (0.2716). These two results confirm that the
MAPIR RGN camera has a better sensitivity to spectral
variations that reflect chlorophyll levels and plant health.

In contrast, the DJI Mavic 3M camera showed a
lower correlation for all reflectance channels and
vegetation index. This shows that the MAPIR RGN sensor
is more optimal in detecting spectral reflections,
particularly in NIR channels, which is very relevant for
plant health analysis. The MAPIR RGN camera is more
recommended for research on detecting sugarcane
plants because it shows a stronger relationship with
chlorophyll variables, both through reflection and
vegetation index. However, this study has a number of
limitations that need to be considered. Limited coverage
of the observation area as well as a relatively small
sample count can affect the generalization of results. In
addition, external factors such as lighting conditions,
shooting angles, and sensor calibration can affect the
quality of the data obtained. Further research is
suggested to conduct comparative tests with a wider
spatial and temporal scope, and involve different types of
plants and different environmental conditions to obtain
more comprehensive results. In addition, the integration
of data with other environmental parameters such as soil
moisture, soil characteristics, and climate information,
as well as the use of artificial intelligence-based image
analysis methods or machine learning, can improve the
accuracy and relevance of findings in supporting the
implementation of precision agriculture.
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